**The Payoff Matrix is an expression of the First Law of Decision Science.**

**Each row represents one action that the decision maker might or might
not freely choose to perform;**

**Each column represents a possible state of nature. At the time the
decision must be made the decision maker assumes that one of the columns
represents the actual decision situation, but her or she does not know
which column is the correct one.**

**The cells of the matrix represent payoffs that the decision maker
would receive if he or she chose the action represented by a particular
row and the actual state of nature were the one represented by a particular
column.**

__Two Kinds of "Easy" Decisions__

**Certainty: **When we make a decision under
the assumption of certainty, we only consider one state of nature to be
possible; the payoff matrix has only one column of payoffs, and the best
decision is the one with the best payoff. Linear programming is an example
of a technique for making decisions under the assumption of certainty.

**Stochastic Dominance:** If
action A has a better payoff than action B under each individual state
of nature, then we say that action B is stochastically dominated by action
A. If the payoff matrix truly represents every thing the decision maker
hopes (or fears) to receive from the decision in question, then no rational
decision maker will ever choose to perform action B.

**Several decision rules exist; each has a different way to convert
a row of possible payoffs into a single representative number-- for example:**